NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Master of Technology VLSI Design First Year

(Effective from the Session: 2022-23)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-I

SI.	Subject	Subject	P	eriod	ls	Evaluation Schemes			End Semester		Total	Credit	
NO.	Codes		L	Т	Р	СТ	ТА	TOTAL	PS	TE	PE		
1	AMTVL0101	CMOS Digital VLSI Design	3	0	0	20	10	30		70		100	3
2	AMTVL0102	Advanced Digital Design using Verilog	3	0	0	20	10	30		70		100	3
3	AMTCC0101	Research Process and Methodology	3	0	0	20	10	30		70		100	3
5		Departmental Elective-I	3	0	0	20	10	30		70		100	3
6		Departmental Elective-II	3	0	0	20	10	30		70		100	3
7	AMTVL0151	CMOS Digital VLSI Design Lab	0	0	4				20		30	50	2
8	AMTVL0152	Advanced Digital Design Lab using Verilog	0	0	4				20		30	50	2
		TOTAL										600	19

Departmental Elective-I:

- 1. AMTVL0111 Microelectronics
- 2. AMTVL0112 MOS Device Modeling
- 3. AMTVL0113 Analog IC Design

Departmental Elective-II:

- 1. AMTVL0114 Microchip Fabrication Technology
- 2. AMTVL0115 Clean Room Technology and Maintenance
- 3. AMTVL0116 ULSI Technology

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-II

Sl. Subject		Subject	Periods			Evaluation Schemes				End Semester		Total	Credit
NO	Codes		L	T	Р	СТ	TA	TOTAL	PS	TE	PE]	
1	AMTVL0201	Digital Design Using FPGA and CPLD	3	0	0	20	10	30		70		100	3
2	AMTVL0202	Low Power VLSI Design	3	0	0	20	10	30		70		100	3
3		Departmental Elective-III	3	0	0	20	10	30		70		100	3
4		Departmental Elective-IV	3	0	0	20	10	30		70		100	3
5		Departmental Elective-V	3	0	0	20	10	30		70		100	3
6	AMTVL0251	Digital Design Using FPGA and CPLD Lab	0	0	4				20		30	50	2
7	AMTVL0252	Low Power VLSI Design Lab	0	0	4				20		30	50	2
8	AMTVL0253	Seminar-I	0	0	2				50			50	1
		TOTAL										650	20

Departmental Elective-III:

- 1. AMTVL0211 VLSI Testing and Testability
- 2. AMTVL0212 VLSI DSP Architectures
- 3. AMTVL0213 Full Custom Design

Departmental Elective-IV:

- 1. AMTVL0214 MEMS Sensor Design
- 2. AMTVL0215 Nanoscale Devices: Modeling & Simulation
- 3. AMTVL0216 Physical Design & Automation

Departmental Elective-V:

- 1. AMTVL0217 Embedded Microcontrollers
- 2. AMTVL0218 Real Time Operating System
- 3. AMTVL0219 SOC Design using ARM

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	M. TECH FIRST YEAR			
Course Code	AMTVL0101	LTP	Credit	
Course Title	CMOS Digital VLSI Design	3 0 0	03	
Course Objec	tive:			
1	To explain basics of MOS switch, MOS fabrication and			
	their characteristics.			
2	To explain basic concept of CMOS inverter operation, its			
	characteristics and switching power dissipation.			
3	To design static CMOS combinational and sequential			
	logic at the transistor level, including mask layout.			
4	To explain the concept of dynamic logic circuits.			
5	To design functional units including ROMs, SRAMs, and DRAM.			
Pre-requisites	Basics of CMOS.			
	Course Contents / Syllabus			
UNIT-I	MOS TRANSISTOR BASIC	10 ł	nours	
MOS Transistor	Basic, MOS switch, VLSI Design flow & Y-Chart, Basic	MOS Dev	ice design	
equation and sec	cond order effect, Fabrication Process Flow: Basic Steps,	The CMC	OS n-Well	
Process, Layout	Design Rules, MOS inverters: DC transfer characteristics	, latchup,	MOSFET	
capacitances.				
UNIT-II	CMOS INVERTER		9hours	
CMOS inverter:	Circuit operation, DC transfer characteristics, noise margin:	calculation	on of VIL,	
VIH, Vth, Desig	n of CMOS inverter, Supply voltage scaling, power and	area cons	iderations.	
Switching charac	teristic: Delay time definition, calculation of delay times,	inverter d	esign with	
delay constraints,	Switching Power dissipation of CMOS inverter.			
UNIT-III	COMBINATIONAL & SEQUENTIAL MOS LOGIC CIRCUITS		8hours	
Combinational N	IOS Logic Circuits: MOS logic circuits with NMOS loa	ds, Comp	olex Logic	
circuits design –	Realizing Boolean expressions using NMOS gates and CM	10S gates	, AOI and	
OIA gates, CMO	S full adder, CMOS transmission gates, Designing with Trans	smission g	ates,	
Sequential MOS	Logic Circuits: Behavior of bi-stable elements, D latch, SR	Latch, Clo	cked latch	
and flip flop circu	ints, CMOS, and edge triggered flip-flop.			
UNIT-IV	DYNAMIC LOGIC CIRCUITS	· ~	9hours	
Logic Circuits: I dynamic circuit t	Basic principle of pass transistor circuits, Voltage Bootstra echniques, Dynamic CMOS transmission gate logic, High pe	pping, Sy erformance	nchronous e Dynamic	
CMOS				
UNIT-V	SEMICONDUCTOR MEMORIES		8 hours	
Semiconductor Memories: Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash				
Course Outcome: After successful completion of this course students will be able to				

CO 1	To identify the fabrication process of CMOS transistor.	
CO 2	To identify basic concept of CMOS inverter operation, its	
	characteristics and switching power dissipation.	
CO 3	Design combinational & Sequential MOS logic circuits	
	like latches and flip flops.	
CO 4	Explain and design synchronous dynamic pass transistor	
	circuits	
CO 5	Analyse SRAM cell and memory arrays.	

Text Books

1. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits - Analysis & Design, , MGH, Third Ed., 2003

2. Jan M Rabaey, Digital Integrated Circuits - A Design Perspective, Prentice Hall, Second Edition, 2005

3. David A. Hodges, Horace G. Jackson, and Resve A. Saleh, Analysis and Design of Digital Integrated Circuits, Third Edition, McGraw-Hill, 2004

Reference Books

1. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation, Wiley-IEEE Press, 2007

2. Christopher Saint and Judy Saint, IC layout basics: A practical guide, McGraw-Hill Professional, 2001

	M. TECH FIRST YEAR					
Course Code	AMTVL0102	LTP	Credit			
Course Title	Advanced Digital Design using Verilog	300	03			
Course Object	ive:					
1	Study and explain the basic concepts Verilog HDL.					
2	Implement digital circuits using distinct design style	es.				
3	Design and synthesis digital circuits using HDLs.					
4	Study the concepts of data path design and switch le modeling.	evel				
5	Explain about pipelining and processor design.					
Pre-requisites:	Digital System Design					
	Course Contents / Syllabus					
UNIT-I	INTRODUCTION TO HARDWARE DESCR	IPTION	8 hours			
	LANGUAGE (HDL)					
Introduction to hardware description language (HDL), Verilog language and data types Digital System Design Process, Hardware modeling, Introduction to hardware description language (HDL), Verilog language features, elements of Verilog, Top-Down, Bottom-up Design, Verilog operators, Data types in Verilog; net type, reg type, wire type, Verilog Models of propagation delay						
UNIT-II	DISTINCT DESIGN STYLES	• • • • • • • • • • • • •	8 hours			
Verilog descriptio flow level, proce Verilog test bench	n styles, behavioral and structural design style, Veril dural assignment, blocking / non-blocking assignm , writing Verilog test benches.	log attribu ents, user	ites; Gate level, data defined primitives,			
UNIT-III	SYNTHESIS OF COMBINATIONAL & SEQUENTIAL LOGIC		8 hours			
HDL-based synth sequential logic, s hierarchical struct	HDL-based synthesis - technology-independent design, styles for synthesis of combinational and sequential logic, synthesis of finite state machines, synthesis of gated clocks, design partitions and hierarchical structures.					
UNIT-IV	DATA PATH AND CONTROLLER DESIGN		8 hours			
Modeling finite st memory, Modelin	ate machines, Data-path and Controller Design, Syr g register banks, Switch level modeling.	nthesizabl	e Verilog, Modeling			
UNIT-V	PIPELINING AND PROCESSOR DESIGN		8 hours			
Basic pipelining modeling of the pr	concepts, Pipeline modeling, Pipeline implementa occessor.	tion of a	processor, Verilog			
Course Outcon	Course Outcome: After successful completion of this course students will be able					
to						
CO 1	Outline the basic concepts Verilog HDL.					
CO 2	Design of digital circuits using distinct design styles	5.				
CO 3	Model HDL based Synthesis of digital circuits.					
CO 4	Analyze the concepts of data path design and switch modeling.	n level				

CO 5	Implement pipelining and processor design using Verilog					
	modeling.					
Text books						
1. Navabi, Z., 199	1. Navabi, Z., 1999. Verilog digital system design. McGraw-Hill.					
2. Palnitkar, S., 20	03. Verilog HDL: a guide to digital design and synthesis (Vol.	1). Prentice Hall				
Professional.						
3. Arnold, M.G., 1	998. Verilog digital computer design: Algorithms into hardwar	re. Prentice-Hall,				
Inc.						
Reference Boo	ks					
1. Lin, M.B., 2008	. Digital system designs and practices: using Verilog HDL and	FPGAs. Wiley				
Publishing.						
2. Unsalan, C. and Tar, B., 2017. Digital system design with FPGA: implementation using Verilog						
and VHDL. McGr	aw-H					

Link:	
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=3
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=12
Unit 3	https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=23
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ

		M. TECH FIRST YEAR				
Course Co	de	AMTCC0101	AMTCC0101 L T P			
Course Tit	le	Research Process & Methodology	3	00	03	
Course Ob	ject	ive:				
1	То	explain the concept / fundamentals of research and their types	5			
2	То	study the methods of research design and steps of research pro	oces	S		
3	To tecl	explain the methods of data collection and procedure of iniques	sam	pling		
4	To con	analyze the data, apply the statistical techniques and under cept of hypothesis testing	stan	d the		
5	То	study the types of research report and technical writing.				
Pre-requis	ites	Basics of Statistics				
		Course Contents / Syllabus				
UNIT-I		INTRODUCTION TO RESEARCH			8 hours	
Definition, o Analytical, A Research met	bject Appl thods	ive and motivation of research, types and approaches of res ied vs. Fundamental, Quantitative vs. Qualitative, Conce s versus Methodology, significance of research, criteria of goo	earc eptu d re	h, De al vs. search	scriptive vs. Empirical, 1.	
UNIT-II		RESEARCH FORMULATION AND DESIGN			8 hours	
objective of and identifyi design.	Liter ng t	ature review, Locating relevant literature, Reliability of a souther research problem, Literature Survey, Research Design,	irce. Me	, Writ thods	ing a survey of research	
UNIT-III		DATA COLLECTION			8 hours	
Classification primary and sampling des	Classification of Data, accepts of method validation, Methods of Data Collection, Collection of primary and secondary data, sampling, need of sampling, sampling theory and Techniques, steps in sampling design, different types of sample designs, ethical considerations in research.					
UNIT-IV		DATA ANALYSIS			8 hours	
Processing Operations, Data analysis, Types of analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis Testing, Data processing software (e.g. SPSS etc.), statistical inference, Chi-Square Test, Analysis of variance(ANOVA) and covariance, Data Visualization – Monitoring Research Experiments ,hands-on with LaTeX.						
UNIT-V TECHNICAL WRITING AND REPORTING OF RESEARCH 8 hours						
Types of research report: Dissertation and Thesis, research paper, review article, short communication, conference presentation etc., Referencing and referencing styles, Research Journals, Indexing, citation of Journals and Impact factor, Types of Indexing-SCI/SCIE/ESCI/SCOPUS/DBLP/Google Scholar/UGC-CARE etc. Significance of conferences and their ranking, plagiarism, IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, reproducibility and accountability.						
Course out	tcor	ne: Upon completion of the course, the student will be able	e to			

CO 1	Explain concept / fundamentals for different types of research				
CO 2	Apply relevant research Design technique				
CO 3	Use appropriate Data Collection technique				
CO 4	Evaluate statistical analysis which includes various parametric test				
	and non-parametric test and ANOVA technique				
CO 5	Prepare research report and Publish ethically.				
Text books	Text books				
1. C. R. Ko	thari, Gaurav Garg, Research Methodology Methods and Techniques	, New Age			
Internatio	nal publishers, Third Edition.				
2. Ranjit Ku	umar, Research Methodology: A Step-by-Step Guide for Beginners, 2	2 nd Edition,			
SAGE 2005.					
3. Deepak Chawla, NeenaSondhi, Research Methodology, Vikas Publication					
Reference Books					

1. Donald Cooper & Pamela Schindler, Business Research Methods, TMGH, 9th edition

2. Creswell, John W. ,Research design: Qualitative, quantitative, and mixed methods approaches sage publications,2013

NPTEL/ You tube/ Faculty Video Link:

https://www.youtube.com/playlist?list=PL6G1C6j0WUTXqXL9O0CgTXCr1hL8HR2dY https://www.youtube.com/playlist?list=PLVok63jpnHrFFQI6BqkIksVqDnYG0ZI41 https://www.youtube.com/playlist?list=PLnbm2MNkZYwOVVedGBQtID-jKgj9dD8kW https://www.youtube.com/playlist?list=PLPjSqITyvDeWBBaFUbkLDJ0egyEYuNeR1 https://www.youtube.com/playlist?list=PLdj5pVg1kHiOypKNUmO0NKOfvoIThAv4N

		M. TECH FIRST YEAR			
Course C	ode	AMTVL0151	LTP	Credit	
Course T	itle	CMOS Digital VLSI Design Lab	0 0 4	02	
		List of Experiment			
Sr. No.	Nan	ne of Experiment			
1	Stud	y of Microwind software and its features.			
2	Desi	gn, simulate and verify the stick diagram of CMOS Inverter usi	ng Microw	vind.	
3	Desi (a) I	gn, simulate and verify the result of universal gates using Micro NAND (b) NOR	owind		
4	Desi (a) Z	gn, simulate and verify theresult of following gates using Micro KOR (b) XNOR	owind		
5	Desi Y=((gn, simulate and verify the operation of logic function $B+CD(E+F)$)'	n using	Microwind	
6	Desi	gn, simulate and verify the operation of CMOS half adder using	g Microwir	nd.	
7	Desi Micr	gn, simulate and verify the operation of CMOS full adder usin owind.	ng two hal	f adders in	
8	Desi	gn, simulate and verify the operation of 4:1 Multiplexer in Micr	owind.		
9	Desi	gn, simulate and verify the operation of logic function using D	Dynamic ai	nd Domino	
	logic	in Microwind: Y=((<i>B</i>+C<i>D</i>)(<i>E</i>+F))'			
10	Desi	gn, simulate and verify pseudo NMOS Inverter.			
Lab Cou	rse C	utcome: After completion of this course students will be a	ble to		
CO 1	Anal	yze the features of Microwind software.			
CO 2	Desi	gn, simulate and verify the result of universal gates, XOR, XN	OR.		
CO 3	Desi	gn, simulate and verify the operation of logic function using Mi	crowind.		
CO 4	Desi	gn, simulate and verify the operation of CMOS half/full adder u	ising Micro	owind.	
CO 5	Desi	gn, simulate and verify the operation of Multiplexer in Microwi	nd.		
Link:					
https://ww	https://www.youtube.com/watch?v=F-8_caipPsY				
https://www	https://www.youtube.com/watch?v=S1VOEqApQvA				
https://www	https://www.youtube.com/watch?v=EHUJda2ttU8				
https://www	v.yout	ube.com/watch?v=yHJmFuexWbM			
https://www	v.yout	ube.com/watch?v=7K_0I6CjBOY			

	M. TECH FIRST YEAR				
Course Code	AMTVL0152	L T P	Credit		
Course Title	Advanced Digital Design Lab using Verilog	0 0 4	02		
Modeling and	d Functional Simulation of the following digital circu	its (with Xili	nx/		
Miod	eisim tools) using verilog Hardware Description La	iguage.			
Sr. No.	Name of Experiment				
1	Design and simulate the Verilog HDL code to describ	e the function	is of a Full		
2	Adder and Subtractor using three modeling styles.	fallowing			
Z	combinational circuits:	lollowing			
	a) Av1 Multiplever using gate level modelin	r			
	b) 8x1 Multiplexer using dataflow level modeling	5 Jeling			
	c) A Bit Binary to Gray Code Converter usi	a structural			
	modeling	ig su ucturar			
3	Design and simulate the Verilog HDL code for the fol	lowing comb	inational		
	circuit:				
	a) 3 to 8 Decoder				
	b) 8 to 3 Encoder				
4	Design and simulate the Verilog HDL code	for the f	ollowing		
	combinational circuits using structural modeling.		U		
	a) 16x1 Multiplexer using 4x1 Mux				
	b) 4- Bit Comparator using 1 Bit Compara	or			
5	Design and simulate the Verilog HDL code for the	basic arithm	netic and		
	bitwise logical operations of ALU.				
6	Design and simulate the Verilog HDL code for the fl	p-flops:			
	a) SR FF				
	b) JK FF				
	c) D FF				
	d) T FF				
7	Design and simulate the Verilog HDL code for the fo	llowing coun	ters:		
	a) 4- Bit Up-Down Counter	-			
	b) BCD counter (Synchronous reset and asy	nchronous re	set)		
8	Design and simulate the Verilog HDL code for the	following 4	- Bit Shift		
	register:				
	a) SISO				
	b) SIPO				
	c) PIPO				
	d) PISO				
9	Design and simulate the Verilog HDL code for 4- Bit	iniversal shif	t register.		
10	Design and simulate the Verilog HDL code to detect the	e sequence 1	010101.		
Lab Course	Outcome: After completion of this course students	are able			
CO 1	Translate the digital design into the Verilog HDL.				
CO 2	Design the combinational circuits in Verilog HDL.				
CO 3	Design the sequential circuits in Verilog HDL.				

CO 4	Implement different digital circuits with component testing.
Link:	
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=3
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=12
Unit 3	https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn- EkuBs3arreilxa2UKIChl&index=23
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ

M. TECH FIRST YEAR				
Course	Code	AMTVL0111	LTP	Credit
Course '	Title	Microelectronics	300	03
Course	Object	tive:		
1	To pi epitax	ovide the knowledge of different fabrication proc y, oxidation and their applications.	esses like	;
2	2 To provide the knowledge of diffusion, ion implantation and different types of lithography and etching.			
3	To pro	ovide the knowledge of Discrete devices and its fabricat	ion.	
4	To pro circuit	ovide the knowledge of Different digital logic circuits and as.	nd analog	
5	To pro	ovide the basic knowledge of BiCMOS ICs and their pa	ckaging.	
Pre-req	uisites	Basics of digital electronics, CMOS designing.		
		Course Contents / Syllabus		
UNIT-I		FABRICATION PROCESS	8 h	ours
Need epitaxy Oxidat	for epity, Silico tion & I	axy, Vapour phase epitaxy, Liquid phase epitaxy as on on insulators. Polysilicon Film Deposition: Thermal oxidation, Dielect etallization & it's Application Masking	nd Molec etric and H	ular-Beam Polysilicon
	[] [DIFFUSION & ION IMPLANTATION		8 hours
Basic dopant LITHO Electro	 Basic diffusion, Distribution and range of implanted ions, Annealing and activation of dopants. LITHOGRAPHY & ETCHING: Optical lithography, X-ray lithography, Ion lithography, Electron hear lithography. Wet chemical staking and Dry chemical staking. 			
UNIT-II	[]	DISCRETE DEVICE FABRICATION	U	8 hours
Fabrica Fabrica	ation of ation (P-	f p-n junction, Bipolar junction transistor, JFET, well, N-well & Twin top Process)	MOSFE	Г, CMOS
UNIT-I	V	DESIGNING OF ANALOG AND DIGITAL CIRCUITS		8 hours
Basic circuit for analog and digital ICs, functional elements available in the market. CMOS Logic Circuits– Inverter, Two Input NOR Gate, Two Input NAND Gate. Analog circuits– single stage CE Amplifier and Emitter Follower.				
UNIT-V	τ	BICMOS ICs		8 hours
Design rules and Scaling, BICMOS ICs: Choice of transistor types, pnp transistors, Resistors, capacitors, Packaging: Chip characteristics, package functions, package operations.				
Course Outcome: After successful completion of this course students will be able to				
CO	1	Identify different fabrication processes		
CO	2	Implement diffusion, ion implantation and different		

	types of lithography and etching.
CO 3	Explain Discrete devices and their fabrication.
CO 4	Design different digital logic circuits and analogcircuits
CO 5	Categorize BiCMOS ICs and their packaging.
Text books	
1. Peter V	an Zant, Microchip fabrication, McGraw Hill, 1997.
2. S.M. S	ze, VLSI technology, McGraw-Hill Book company, NY, 1988.
Reference B	Books
1. S.K. Gand	hi, 'VLSI Fabrication Principles'.
2. S.M. Sze,	'Semiconductor Devices Physics and Technology'.
3. Puckness	Douglas A, Eshraghiaw Kamran "Basic VLSI Design" – Prentice Hall (India)
4. K.R. Botk	ar, 'Integrated Circuits'

M. TECH FIRST YEAR					
Course	Code	AMTVL0112	LTP	Credit	
Course	Title	MOS Device Modeling	300	03	
Course	Objec	tive:	1	I	
1	1 To study and analysis of MOS structure, its operations and , MOS as a				
2	To stu	dy and analysis of MOSFET Device Characteristics.			
3	To stu its free	dy and analysis of Mobility models, MOS Performance under the limitations.	ce paramet	ters and	
4	To stud	dy and analysis of SOI MOSFET.			
5	To stu	ly and analysis of SPICE Models for Semiconductor D	evices.		
Pre-req	uisites	Basic Electronics Engineering		ŀ	
		Course Contents / Syllabus			
UNIT-I		MOS PHYSICS		8 hours	
work fund band volta the MOSO on thresho	ction di age, ele C, thres old volta	fferences, charges in oxide, interface states, band diag ctrostatics of a MOS (charge based calculations), calcu hold voltage, MOS as a capacitor (2 terminal device), age.	ram of nor lating vari Three terr	n-ideal Mo ous charge minal MO	OS, flat- es across S, effect
UNIT-I	UNIT-II MOSFET DEVICE CHARACTERISTICS 8 hours				
Field-Effect Transistors: MOSFET- basic operation and fabrication; threshold voltages; output and transfer characteristics of MOSFET, short channel and Narrow width effects, MOSFET scaling, Small signal modeling for low frequency and High frequency, high-k gate dielectrics, ultra-shallow junctions source and drain resistance.					
UNIT-I	II I	MOBILITY MODELS AND MOS		1	0 hours
		PERFORMANCE PARAMETERS			
Low field mobility, high field mobility, mobility various models, on current characteristics, off current characteristics, sub threshold swing, effect of interface states on sub threshold swing, drain conductance and transconductance, effect of source bias and body bias on threshold voltage and device operation, Large signal Modeling, small signal model for low, medium and high frequencies.					
UNIT-I	V	THE SOI MOSFET			6 hours
Multiple gate SOI MOSFETs: double gate, FINFET, comparison of capacitances with bulk MOSFET, PD and FD SOI devices, short channel effects, current-voltage characteristics: Lim &Fossum model and C-∞ model, impact ionization and high field effects: Kink effect and Hot-carrier degradation, Floating body and parasitic BIT effects, self-heating.					
UNIT-V	T .	SPICE MODELS FOR SEMICONDUCTOR DEVICES			8 hours
SPICE Models for Semiconductor Devices: MOSFET Level 1, Level 2 and level 3 model, Model parameters;					
Course Outcome: After successful completion of this course students will be able to					
CO 1	Expla	ain and analyse MOS structure, its operations and , MO	S as a capa	acitor.	
CO 2	Expla	ain and analyse MOSFET Device Characteristics.			

CO 3	Explain and analyse the Mobility models, MOS Performance parameters and its				
	frequency limitations.				
CO 4	Explain and analyse SOI MOSFET.				
CO 5	Explain and analyse SPICE Models for Semiconductor Devices.				
Text Boo	ks				
1. E.H	I. Nicollian, J. R. Brews, Metal Oxide Semiconductor - Physics and Technolog	y, John			
Wil	ey and Sons.				
2. Nar Tec	ndita Das Guptha, Amitava Das Guptha, Semiconductor Devices Modelin hnology, Prentice Hall India	ng and			
3. Jean	n- PierrieColinge, Silicon-on-insulator Technology: Materials to VLSI, Kluwer Ad	cademic			
pub	lishers group.				
Referenc	e Books				
1. P.C	Colinge, "FinFETs and Other Multi-Gate Transistors", Springer. 2009				
2. Yar	mis Tsividis, Operation and Modeling of the MOS transistor, Oxford University Pre	ss.			
Video L	ecture Links:				
Unit I:					
https://w	ww.youtube.com/watch?v=KohWxkovp0k				
https://w	ww.youtube.com/watch?v=CT6olzelSKQ				
https://o	https://ocw.tudelft.nl/course-lectures/semiconductor-junction/				
Unit II:					
https://w	https://www.youtube.com/watch?v=0C4uxtS-tlQ				
https://w	/ww.youtube.com/watch?v=XcDeh98ppXk				
https://w	/ww.youtube.com/watch?v=uHTyw4GGnRo				
https://w	/ww.youtube.com/watch?v=xSh9PZZPpOc				
Unit III	•				
https://w	ww.youtube.com/watch?v=4m49vM0Ryt8				
https://w	ww.youtube.com/watch?v=xgYdLvWcvms				
https://w	ww.youtube.com/watch?v=IrbGAgrevic				
Unit IV:					
https://w	ww.voutube.com/watch?v=WWildCmRteg				
https://w	ww.voutube.com/watch?v=svROTHF88eO				
https://m	https://nptel.ac.in/courses/113/104/113104012/				
https://www.youtube.com/watch?y=yS3S1KfNLhE					
Unit V.					
https://m	ntel ac in/courses/117/106/117106033/				
https://www.digimat.in/nntel/courses/video/108107120/L04.html					
https://www.digimat.in/inptel/courses/video/10010/129/L04.ittili					
https://w	https://www.arginia.in/input/courses/viaco/ii//io/it//L01.infin				
example	~ 100 m				
crample	-p37711				

NPTEL course video link: https://nptel.ac.in/courses/117/106/117106033/

M. TECH FIRST YEAR				
Course Code	AMTVL0113	LTP	Credit	
Course Title	Analog IC Design	3 0 0	03	
Course Obje	ctive:		1	
1	To develop the ability to design and analyze MOS based			
2	Analog VLSI circuits.			
2	To analyze the performance of single stage amplifier			
5	circuits for a given specification			
4	Analyze the frequency response of the different			
	configurations of an amplifier			
5	To provide the knowledge of operational amplifier &			
	feedback topologies.			
Pre-requisite	s: Basic electronics devices, Semiconductor & Amplifiers			
	Course Contents / Syllabus			
UNIT-I	BASIC MOS DEVICE PHYSICS	8	hours	
General Consider	rations, MOSFET as a Switch, MOS I/V Characteristics, Se	cond-Ord	er Effects,	
MOS Device Mo	odels, MOS Device Capacitances, NMOS versus PMOS Dev	vices, Lon	g-Channel	
versus Short-Cha	nnel Devices.			
UNIT-II	SINGLE-STAGE AMPLIFIERS		8 hours	
Basic Concepts, (Common-Source Stage, Common-Source Stage with Resistive	Load, CS	Stage with	
Diode-Connected	Load, CS Stage with Current-Source Load, Source Follower, C	Common-C	Gate Stage,	
Cascode Stage, F	olded Cascode.		0.1	
	DIFFERENTIAL AMPLIFIERS		8 hours	
Single-Ended an	d Differential Operation, Basic Differential Pair, Common	on-Mode	Response,	
Mirrors Cascode	Current Mirrors Active Current Mirrors Common-Mode Prop	erties	sie Current	
UNIT IV	FREQUENCY RESPONSE OF AMPLIFIERS		8 hours	
General Consider	rations Miller Effect Association of Poles with Nodes Cor	nmon-Sou	rce Stage	
Source Followers	. Common-Gate Stage. Cascode Stage. Differential Pair. Noise	in Differe	ential Pairs	
Feedback Topolo	gies, Effect of Loading, Effect of Feedback on Noise			
UNIT-V	OPERATIONAL AMPLIFIERS		8 hours	
General Consider	ations, Performance Parameters, One-Stage Op Amps, Two-Sta	age Op Ai	nps, Gain	
Boosting, Comp	arison, Common-Mode Feedback. Input Range Limitations	s, Slew Ra	ate, Power	
Supply Rejection				
Course Outcome: After successful completion of this course students will be able to				
CO 1	Draw the equivalent circuits of MOS based Analog VLSI and analyse their performance	nd		
CO^2	Design analog VLSI circuits for a given specification			
	Analyze the frequency second of the 1'ferrate of			
03	of an amplifier.	ns		
CO 4	Analyse the feedback topologies involved in the amplifier design.			
CO 5	Appreciate the design features of the differential amplifiers.			

Text books
1. Razavi, "Design of Analog CMOS Integrated Circuits", 2nd Edition, McGraw Hill Edition
2016.
2. Paul. R.Gray&Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits",
Wiley, 5th Edition, 2009.
3. R. Gregorian and Temes, "Analog MOS Intgrated Circuits for Signal Processing", Wiley
Publications
Reference Books
1. Ken Martin, "Analog Integrated Circuit Design", Wiley Publications.
2. Sedra and Smith, "Microelectronic Circuits", Oxford Publications.
3. B.Razavi, "Fundamentals of Microelectronics", Wiley Publications

M. TECH FIRST YEAR					
Course Code	AMTVL0114 I	ТР	Credit		
Course Title	Microchip Fabrication Technology 3	00	03		
Course Object	ive:		1		
1	To analyze the basic stages of manufacturing and cryst	al growt	h.		
2	To evaluate the process of wafer preparation and oxida	tion.			
3	To analyze the lithography and etching process				
4	To explain process of diffusion and ion implantation.				
5	To learn the basic process involved in metallization and	d packag	ging		
Pre-requisites:	Basics of semiconductors and their properties.				
•	Course Contents / Syllabus				
UNIT-I	OVERVIEW OF SEMICONDUCTOR INDUSTRY	8	hours		
Overview of semi	conductor industry, Process and Product Trends, Stages	of Man	ufacturing,		
Semiconductor m	naterial properties, Crystal growth, Basic wafer fabri	ication of	operations,		
Semiconductor Si	licon Preparation, Czochralski (CZ) method, Float zone,	Crystal	and Wafer		
Quality.					
UNIT-II	WAFER FABRICATION		8 hours		
Basic Wafer Pa	reparation, Wafer Terminology , Basic Wafer-Fabric	cation C	Operations:		
Layering, Patter	rning, Doping, Heat treatments, Circuit design, m	asks, Ez	xample of		
Fabrication Proces	ss, Oxidation: Dry and wet oxidation, Clean room Const	ruction.			
UNIT-III	LITHOGRAPHY AND ETCHING		8 hours		
Ten step patternin	ng process, Lithography: Optical Lithography, Electron	beam li	thography,		
Photo masks, Wet	Chemical Etching, Dry etching Wet etching.	-			
UNIT-IV	DOPING AND DEPOSITION		8 hours		
Doping and depositions: Diffusion process steps, deposition, Drive-in oxidation, Ion-					
Implantation: Ion	-Implantation Technique, Implantation Equipment, C	CVD bas	sics, CVD		
process steps, Lov	w pressure CVD systems, Plasma enhanced CVD syste	ems, Vap	oour phase		
epitaxy, molecular	r beam epitaxy.				
UNIT-V	METALLIZATION AND PACAKAGING		8 hours		
Metallization: N	Ietallization Application, Metallization Choices,	Physical	l Vapour		
Deposition, Vacu	im Deposition, Sputtering Apparatus. Packaging of VLS	I device	s: Package		
Types, Packaging	Design Consideration, Package Fabrication Technologie	es.			
Course Outcor	ne: After successful completion of this course stude	nts will l	be able to		
CO 1	Analyze the basic stages of manufacturing and crystal	growth.			
CO 2	Evaluate the process of wafer preparation and oxidation.				
CO 3	Analyze the lithography and etching process.				
CO 4	Explain the process of diffusion and ion implantation.				
CO 5	CO 5 Learn the basic process involved in metallization and packaging				
Text books					
1. Peter Van Zant	, Microchip fabrication, McGraw Hill, 1997.				

2. S.M. Sze, VLSI technology, McGraw-Hill Book company, NY, 1988

Reference Books

1. Wani-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000

2. C.Y. Chang and S.M. Sze, ULSI technology, McGraw Hill, 2000

3. S.K. Ghandhi, "VLSI Fabrication Principles", Willy-India Pvt. Ltd, 2008.

4. J. D. Plummer, M. D. Deal and Peter B. Griffin, "Silicon VLSI Technology: Fundamentals, Practice and Modeling", Pearson Education Publication, 2009

M. TECH FIRST YEAR					
Course Code	AMTVL0115	LT P	Credit		
Course Title	Clean Room Technology And Maintenance	300	03		
Course Objectiv	ve:		I		
1	Study and explain cleanroom standards and	ancillary			
	cleanrooms.	5			
2	Knowledge about clean room fabrication environment.				
3	Identify the various filtration mechanisms.				
4	Categorize cleanroom testing and monitoring system.				
5	Analyze air quantities, pressure differences and clean r	oom			
	disciplines.				
Pre-requisites:	Basics of IC Technology				
	Course Contents / Syllabus				
UNIT-I	INTRODUCTION TO CLEAN ROOM TECHNOL	JOGY	8 hours		
Introduction, Clean	room Classification Standards, Unidirectional air flow	clean room	m, Basis of		
Clean room stan	dards, Federal Standards 209 ,ISO standard 146	44-1:1999	,Cleanroom		
classification(Pharm	naceutical, cleanrooms)		1		
UNIT-II	CLEAN ROOM ENVIRONMENT		8 hours		
Design of Turbulently Ventilated and Ancillary Cleanrooms, Mini environments, isolators an					
RABS, Containmer	nt zone, Construction and clean build, Design of Unidire	ctional Cle	anrooms.		
			1		
UNIT-III	FILTRATION MECHANISM		8 hours		
High Efficiency Air filtration, Particle removal mechanisms, testing of high efficiency filters.					
UNIT-IV	TESTING & MONITORING SYSTEM		8 hours		
Cleanroom Testing	and Monitoring, Principles of cleanroom testing, Testing	ng in relati	ion to room		
type and occupation	n state, Monitoring of cleanroom.		1		
UNIT-V	CLEAN ROOM STANDARD PARAMETERS		8 hours		
Measurement of A	ir Quantities and Pressure Differences, Air movement of	control, Re	ecovery test		
methods, Cleanroon	n containment leak testing.				
Course Outcom	e: After successful completion of this course student	ts will be a	able to		
CO 1	Specify cleanroom standards and ancillary cleanrooms.				
CO 2	Explain about clean room fabrication environment.				
CO 3	Identify the surface finishes and filtration mechanisms.				
CO 4	Categorize cleanroom testing and monitoring system.				
CO 5	Analyze air quantities, pressure differences and clean r disciplines.	oom			
Text books					
1. William W Operation, 2	hite, Cleanroom Technology: Fundamentals of De nd Edition, Wiley, 2010.	sign, Tes	ting and		

2. Matts Ramstorp, Introduction to Contamination Control and Cleanroom Technology, Wiley, 2008.

Reference Books

1. Wani-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000

Link:	
Unit 1	https://www.youtube.com/watch?v=8uGZMyjFugg
Unit 2	https://www.youtube.com/watch?v=YAouXIS_FSU
Unit 3	https://www.youtube.com/watch?v=wSSfOqEQClc
Unit 4	https://www.youtube.com/watch?v=aBIxPo0p7dc
Unit 5	https://www.youtube.com/watch?v=lHmHYWdH8Ug

M. TECH FIRST YEAR				
Course Code	AMTVL0116 LTP	Credit		
Course Title	ULSI Technology 3 0 0	03		
Course Objective	e:			
1	To study the basics of chip fabrication and clean room.			
2	To learn the ion implantation and variousOxidation technologies			
3	To study the classification of lithographic techniques.			
4	To identify various metallization schemes.			
5	To explain the concept of Memories.			
Pre-requisites:M	icroelectronics			
	Course Contents / Syllabus			
UNIT-I	CLEAN ROOM AND WAFER PREPARATION	8 hours		
Environment for UL	SI technology: clean room and safety requirements, Wafer clear	ning process and		
wet chemical etchi	ing techniques ,Microelectronics and microscopy, ULSI prod	ess technology,		
Application of TEM	for construction analysis, TEM sample preparation techniques.			
UNIT-II	IMPURITY INCORPORATION	9 hours		
Oxidation: kinetics technologies in ULS	of silicon dioxide growth for thick, thin and ultra-thin t I; Characterization of oxide films; high K and low K dielectrics for	ilms. Oxidation r ULSI.		
UNIT-III	LITHOGRAPHIC TECHNIQUES	9 hours		
Photolithography techniques for VLSI/ULSI; Mask generation. Chemical Vapour deposition techniques: CVD techniques for deposition of polysilicon, silicon dioxide, silicon nitride and metal films; epitaxial growth of silicon; modelling and technology. Ion implantation and substrate defects, Dielectrics and isolation, Silicides, polycide and salicide, Metallization and interconnects.				
UNIT-IV	METALLIZATION TECHNIQUES	8 hours		
Evaporation and sputtering techniques. Failure mechanisms in metal interconnects; multilevel Metallization schemes. TEM in failure analysis, Novel devices and materials, TEM in under bump metallization and advanced electronics packaging technologies, High – resolution TEM in microelectronics.				
UNIT-V	ULSI DEVICES	6 hours		
DRAM cell with planar capacitor, ULSI devices II: DRAM cell with stacked capacitor, ULSI devices III: DRAM cell with trench capacitor, ULSI devices IV: SRAM.				
Course Outcome: After successful completion of this course students will be able to				
CO 1	Explain basics of chip fabrication and clean room.			
CO 2	Perform the ion implantation and various Oxidation technologies			
CO 3	Apply lithographic techniques for the designing of circuits.			

CO 4	Explain and analyze metallization schemes.	
CO 5	Design semiconductor memories.	

Text books

1. S.M. Sze(2nd Edition)"VLSI Technology", McGraw Hill Companies Inc.

2. Chih-Hang Tung, George T.T. Sheng, Chih-Yuan Lu, ULSI Semiconductor Process Technology Atlas, John Wiley & Sons, 2003.

3. C.Y. Chang and S.M. Sze (Ed), "ULSI Technology", 2000, McGraw Hill Companies Inc.

Reference Books

1. Stephena, Campbell, "The Science and Engineering of Microelectronic Fabrication", Second Edition, Oxford University Press.

2. James D. Plummer, Michael D. Deal, "Silicon VLSI Technology" Pearson Education Reading.

M. TECH FIRST YEAR						
Course Code	AMTVL0201	LT P	Credit			
Course Title	Digital Design using FPGA and CPLD	300	03			
Course Objectiv	ve:					
1	To study finite state machines and its realization.					
2	To study asynchronous Sequentialmachine.	To study asynchronous Sequentialmachine.				
3	To learn Designing of Digital logic using PLD.					
4	To get knowledge of different FPGA series.					
5	To study different CPLD series.					
Pre-requisites: E	Basics of CMOS and Fabrication.					
	Course Contents / Syllabus					
UNIT-I	FINITE STATE MACHINE (FSM)	81	nours			
Introduction, Desig	n Strategies, Mealy & Moore model, Realization of State D	iagram &	state table			
from verbal descri	ption, Minimization of State Table from completely & In-	completely	y specified			
State Machine, Intr	oduction to Algorithmic State Machine.					
UNIT-II	ASYNCHRONOUS SEQUENTIAL CIRCUIT		8 hours			
Introduction to A Asynchronous Seq	synchronous Sequential Machine (ASM), fundamental uential machine, Secondary State Assignments in Asynchro Hazards	& pulse mous Seq	mode uential			
	UNIT III PROCRAMMARI E LOCIC DEVICES (PLD) 9 hours					
Introduction, Architecture, Features & Digital Design of ROM, EPROM, EEPROM, Flash Memory,						
UNIT-IV	FIELD PROGRAMMABLE GATE ARRAY (FPGA)		8 hours			
Logic blocks, Rout Xilinx FPGA XC4 from Altera) with r	ing architecture, Design flow, Technology Mapping for FPG. 000, Comparative Study of Xilinx (ZU11EG) & Intel (Stra eference to cortex A53.	A. tix 10 SX	(650 series			
UNIT-V	COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)		8 hours			
Altera series – Max 5000/7000 series and Altera FLEX logic- 10000 series CPLD, AMD's- CPLD (Mach 1 to 5), Cypress FLASH 370 Device technology, Lattice plsi architectures – 3000 series – Speed performance and system programmability.						
Course Outcom	e: After completion of this course students will be able t	0				
CO 1	Realize finite state machines.					
CO 2	Formulate asynchronous Sequentialmachine.					
CO 3	Design Digital logic using PLD.					
CO 4	Explain different FPGA series.					
CO 5	Explain different CPLD series.					
Text books						

- 1. P. K. Chan& S. Mourad, Digital Design using Field Programmable Gate Array, Prentice Hall.
- 2. Charles H Roth, Jr., "Digital Systems Design Using VHDL", PWS, 1998.
- 3. S. Trimberger, Edr., Field Programmable Gate Array Technology, Kluwer Academic Pub.

- 1. J. Old Field, R. Dorf, Field Programmable Gate Arrays, John Wiley& Sons, Newyork.
- 2. S.Brown, R.Francis, J.Rose, Z.Vransic, Field Programmable GateArray, Kluwer Pub.
- 3. Richard FJinder, "Engineering Digital Design," Academic press

M. TECH FIRST YEAR				
			~	
Course Code		LTP	Credit	
Course Title	Low Power VLSI Design	300	03	
Course Objectiv	/e:			
1	To provide the knowledge of Low Power VLSI C	hips and		
	different losses associated with the CMOS Devices			
2	To provide the knowledge of Power estimation Simulation	n Power		
	analysis and Probabilistic power analysis of Design			
3	To provide the knowledge of circuit level and Logic leve	l design.		
4	To provide the knowledge of Low Power Architecture an	d system.		
5	To provide the basic knowledge of Low Power Clock Dis	stribution		
-	Algorithm & Architectural Level Methodologies			
Pre-requisites: (CMOS VLSI Design, Digital logic Design.			
	Course Contents / Syllabus			
UNIT-I	INTRODUCTION & DEVICE AND TECHNOLOGY	7	8 hours	
	IMPACT ON LOW POWER			
Introduction: Need	ls for Low Power VLSI Chips, Sources of power dissipation	on on digit	al integrated	
circuit, Emerging lo	w power approaches, Physics of power dissipation in CMC	DS Devices	,	
Device and technol	logy impact on low power: Dynamic dissipation on low p	ower, Tran	sistor sizing	
& gate oxide thickr	ess, Impact of technology Scaling, Technology & Device	innovation	0.1	
UNIT-II	POWER ESTIMATION SIMULATION POWER AF	NAL Y 515	8 hours	
Power estimation Simulation Dewer analysis: SDICE aircuit simulators Cata lavel logic				
simulation Canaciti	ve Power Estimation Static State Power Gate level Canad	ale level le	mation	
Architecture Level	analysis Data Correlation Analysis in DSP systems Monte	Carlo sim	ulation,	
Probabilistic nowe	r analysis, Data Correlation A darysis in Dor Systems. Work	ev Probabi	listic	
Power Analysis Tec	hniques. Signal Entropy.	<i>cy</i> , 1100 <i>a</i> 0		
UNIT-III	LOW POWER DESIGN		8 hours	
Circuit level: Powe	er Consumption in circuit level Flin Flon & Latches des	ion High	Canacitance	
node. Low power di	gital cell library	1911, 111911	cupuentanee	
Logic Level: Gate	Reorganisation. Signal gating. Logic encoding. state r	nachine en	coding. Pre	
computation logic			8,	
UNIT-IV	LOW POWER ARCHITECTURE AND SYSTEM		8 hours	
Power & Performa	Power & Performance Management, Switching Activity Reduction, Parallel Architecture with			
Voltage Reduction,	Flow graph Transformation, Low Power Arithmetic Co	omponent,	Low Power	
Memory Design				
UNIT-V	LOW POWER CLOCK DISTRIBUTION & ALGOR	ITHM	8 hours	
	& ARCHITECTURAL LEVEL METHODOLOGIES			
Low Power Cloc	k Distribution: -Power dissipation in clock distribut	ion, single	driver Vs	
distributed buffers, zero skew Vs tolerable skew chip and package co-design of clock network				
Algorithm & Architectural Level Methodologies:-Introduction, Design flow, Algorithmic Level				

Course Outcome: After successful completion of this course students will be able to		
CO 1	Identify different losses associated with the CMOS Devices.	
CO 2	Explain the concept of Power estimation Simulation Power analysis and Probabilistic Power analysis of Design.	
CO 3	Identify circuit and logic level low power design.	
CO 4	Analyze the Low Power Architecture and system.	
CO 5	Explain Low Power Clock Distribution Algorithm.	
Text books		
1. Gary K. Ye	eap, Practical Low Power Digital VLSI Design, KAP 2007	
2. Rabaey, Pe	edram, "Low power design methodologies" Kluwer Academic, 1997	
Reference Boo	ks	
1. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit" Wiley 2000		

M. TECH FIRST YEAR				
Course Co	CodeAMTVL0251L T PCredit			
Course Title		Digital Design using FPGA and CPLD Lab	0 0 4	02
Pre-requis	ites: Bas	sics Knowledge of Digital Electronics & Digital System Design		
Sr. No.	List of	Experiment		
1	Demons	stration of FPGA and CPLD Boards.		
2	Design	& Implement the Boolean Expression Y=AB+BC+CA on CPLD.		
3	Design	& Implement Full adder and Full Subtractor on CPLD.		
4.	Design	& Implement (i) 2-bit comparator and (ii) 2-bit multiplier (iii) 8x1 M	lultiplexer o	on CPLD.
5	Design	& Implement S-R, J-K, D and T Flip Flops on FPGA.		
6	Design FPGA.	& Implement (i) Universal shift register (ii) 4- bit UP-DOWN Sy	rnchronous	Counter on
7	Design	& Implement the (i) 4-bit ALU (ii) 8- bit SRAM on FPGA.		
8	Design & Implement 7- Segment Display Driver circuit using CPLD.			
9	Design & Implement Sequence Detector Circuit to detect given sequence 10101010 on FPGA.			
10	Modelling and Implementation of UART on FPGA.			
Lab Cour	se Outc	come: After completion of this course students will be able to		
CO 1	Design & Implement the Combinational Logic Circuits on CPLD.			
CO 2	Design & Implement the Sequential Logic Circuits on CPLD.			
CO 3	Design & Implement the Memories on FPGA.			
CO 4	4 Design & Implement UART on FPGA.			
Link:				
1	https://www.youtube.com/watch?v=9mpRF6bAY1g			
2	https://www.youtube.com/watch?v=EGDHXynlXMk			
3	https://v	www.youtube.com/watch?v=H2GyAIYwZbw		
4	https://v	www.youtube.com/watch?v=WKZgK3BKDIo		
5	https://www.youtube.com/watch?v=s3Dk4CEfNg4&list=PLJ5C_6qdAvBELELTSPgzYkQg3Hgcl Qh-5&index=6			

M. TECH FIRST YEAR			
Course Code	AMTVL0252	LT P	Credit
Course Title	Low Power VLSI Design Lab	004	02
Software Tool: SOF	FWARE TOOL: CADENCE – Tool Bundle Consisting	o o i	
1. ANAL	OG & MIXED SIGNAL DESIGN FRONT END TOO	LS	
•	Virtuoso(R) Spectre(R) Simulator RFL MMSIM 7 1		
•	Virtuoso(R) Schematic Editor XL REL IC 6.1.0		
2. ANAL	OG BACK END TOOL		
•	Virtuoso(R) Layout Suite XL REL IC 6.1.0		
3. PHYS	ICAL DOMAIN		
•	SOC Encounter - XL (aka Cadence (R) SOC Encounter -	GPS)	
Sr. No.	Name of Experiment		
1	I-V characteristics of long and short-channel MOSFET	transisto	rs in CMOS
	technology.		
2	The gate capacitance of an MOS transistor. (Gate Capacit	ance v/s V	GS).
3	The impact of device variations on static CMOS inverter	VTC.	
4	The VTC of CMOS inverter as a function of supply voltage	ge and sub	strate bias.
5	Dynamic power dissipation due to charging and dischargi	ng capacit	ances.
6	Short-circuit currents during transients and impact of load	capacitan	ce on short-
	circuit current in a CMOS inverter.		
7	The VTC of a two-input NAND & NOR data dependency.		
8	The variable-threshold CMOS inverter and Combinational circuit.		
9	The low-power / low voltage D-Latch circuit.		
10	0 Low-power circuits		
	a. The Full Adder		
	b. The Binary Adder		
	c. The Multiplier		
	a. The Shifter. C_{all}		
	f = DR AM Cell		
Lah Course Out	1. The DRAW Cen	a 4 a	
CO 1	Study and analyze the various noremators of MOS Transit	tor	
	Study and analyze the different parameters of CMOS i	nverter fo	r low power
	lesion		
CO 3	Design and implement the combinational digital circuits f	or low poy	ver circuits.
		or io ii po i	for encurs.
CO 4	Design and implement the sequential digital circuits for lo	w power of	circuits.
Link:		1	
Unit 1	https://www.youtube.com/watch?v=TFOO1JA112Y		
	https://youtu.be/ruClwamT-R0		
Unit 2	https://www.analog.com/en/design-center/design-tools-ar	nd-calculat	tors/ltspice-
	simulator.html		Ĩ
	https://www.youtube.com/watch?v=OgO1gpXSUzU		

	https://nptel.ac.in/courses/111/106/111106134/
Unit 3	https://nptel.ac.in/courses/106/105/106105034/ https://www.youtube.com/watch?v=dqcfYTePRxQ https://www.youtube.com/watch?v=rEeqxozkdZ0
Unit 4	https://www.digimat.in/nptel/courses/video/106105034/L37.html
Unit 5	https://nptel.ac.in/courses/106/105/106105161/

M. TECH FIRST YEAR			
Course Code	AMTVL0211 L T P	Credit	
Course Title	VLSI Testing and Testability 3 0 0	03	
Course Objectiv	e:		
1	To provide an in-depth understanding of the importance and principle of testing and verification of faults affecting VLSI		
	circuits.		
2	To provide the knowledge of the testing and testability of combinational circuits.		
3	To provide the knowledge of the testing and testability of sequential circuits.		
4	To provide an in-depth understanding of the memory design and testing methods.		
5	To provide the basic knowledge of Built in self-test (BIST) Techniques.		
Pre-requisites:D	igital and analog IC fabrication.		
	Course Contents / Syllabus		
UNIT-I	INTRODUCTION TO VLSI TESTING AND FAULT 10 hours		
Importance and Prin	ciple of testing, Challenges in VLSI testing, Levels of abstractions	in VLSI	
testing, Functional v	s. Structural approach to testing, Complexity of the testing problem	n, Types of	
Testing, DC and AC	parametric tests		
Fault Modeling: Stu	ck at fault, fault equivalence, fault collapsing, fault dominance, fau	It simulation	
UNIT-II	TESTING AND TESTABILITY OF COMBINATIONAL8 hoursCIRCUITS		
Test Generation Bas	ics: Test generation algorithms, Random test generation, ATPG alg	orithms for	
combinational circui	its, Boolean difference, Path sensitization, D – algorithm, PODEM	Testable	
combinational logic	circuit design		
UNIT-III	CIRCUITS	8 hours	
Testing of sequentia	l circuits as iterative combinational circuits, state table verification	test	
generation based on	circuit structure, Sequential AIPG,		
	MEMORY DELAY EAULT AND IDDO TESTING	(h a u u a	
UNII-IV Testable memory de	sign DAM foult models. Test elegrithms for DAM. Delay foults.	0 nours	
I estable memory design, KAW fault models, Test algorithms for KAM, Delay faults, Delay tests, IDDQ testing, Testing methods, Limitations of IDDQ testing			
UNIT-V	BUILT IN SELF-TEST (BIST) TECHNIQUES	8 hours	
Built-in self-test (BI	ST): Design rules, Exhaustive testing, Pseudo-random testing, Pse	udo-exhaustive	
testing, Output response analysis, Logic BIST architectures, Introduction to Test compression			
Course Outcome: After successful completion of this course students will be able to			
CO 1	Apply the concepts in testing which can help them design a better yield in IC design		

CO 2	Analyse the various test generation methods for combinational circuits.	
CO 3	Analyse the various test generation methods for sequential circuits.	
CO 4	Identify the design for testability methods for different memory circuits.	
CO 5	Recognize the BIST techniques for improving testability.	

Text books

- 1. An Introduction to Logic Circuit Testing Parag K. Lala, (Morgan & Claypool Publishers)
- 2. Essentials of Electronic Testing for Digital, Memory & Mixed Signal VLSI Circuits Michael L. Bushnell and Vishwani D. Agrawal, (Kluwar Academic Publishers 2000)
- 3. Digital System Testing and Testable Design M. Abramovici, M.Breuer, and A. Friedman (Jaico Publishing House)

- 1. Introduction to Formal Hardware Verification Thomas Kropf (Springer)
- VLSI Test Principles and Architectures Design for Testability W.W. Wen (Morgan Kaufmann Publishers. 2006)
- 3. Digital Systems and Testable Design M.Abramovici, M.A. Breuer and A.D. Friedman (Jaico Publishing House)
- 4. Design Test for Digital IC's and Embedded Core Systems A.L. Crouch (Prentice Hall International)

Link:	
Unit 1	https://youtu.be/u_XLaTTzXaE
Unit 2	https://nptel.ac.in/courses/106/103/106103116/
Unit 3	https://nptel.ac.in/courses/106/103/106103116/
Unit 4	https://nptel.ac.in/courses/106/103/106103116/
Unit 5	https://nptel.ac.in/courses/106/103/106103116/

	M. TECH FIRST YEAR			
Course Code	AMTVL0212	LTP	C	edit
Course Title	VLSI DSP Architectures	3 0 0		03
Course Object	tive:			
1	To explain basics of DSP processors and micro	program	nming	
-	approaches.	P1081		
2	To learn building a data path and control path.			
3	To outline pipelining and pipe lined data path.			
4	To analyzeA/D and D/A converters and DSP computa	tional err	ors.	
5	To identify thearchitectures for programmable	digital	signal	
	processing devices.	-	_	
Pre-requisites	: VLSI DSP Architecture			
	Course Contents / Syllabus			
UNIT-I	BASICS OF DSP PROCESSORS		8 h	ours
Essential feature	s of Instruction set architectures of DSP processo	rs, Micr	o prog	ramming
approaches for in	plementation of control part of the processor, CPU per	formanc	e and its	s factors,
evaluating perform	mance.			
UNIT-II	DATA PATH			9 hours
Introduction to lo	gic design conventions, building a data path, a simple in	mplemen	tation s	cheme, a
multi cycle imple	mentation, simplifying control design.			
UNIT-III	PIPELINING			9 hours
An overview of pipelining, a pipe lined data path, pipe lined control, data hazards and forwarding,				
data hazards, brar	ch hazards, advanced pipelining: extracting more perfor	mance.		
UNIT-IV	CONVERSIONS			8 hours
Number formats for signals and coefficients in DSP systems, dynamic range and precision,			recision,	
sources of errors	in DSP implementations, A/D conversion errors, and D	SP comp	outation	al errors,
D/A conversion	errors.			
UNIT-V	PROGRAMMABLE PROCESSORS			8 hours
Introduction to	architectures for programmable digital signal pro-	ocessing	device	s, basic
architectural feat	ures, DSP computational building blocks, bus archi	tecture,	data ac	ldressing
capabilities, addre	ess generation unit, speed issues, features for external int	erfacing.		
Course Outco	me: After successful completion of this course stude	nts will	be able	to
CO 1	Identify basics of DSP processors and micro	program	nming	
	approaches.			
CO 2	Learn building a data path and control path.			
CO 3	Analyze pipelining and pipe lined data path.			
CO 4	CalculateA/D and D/A converters and DSP computation	onal erro	rs.	
CO 5	Implement architectures for programmable digital sig devices.	gnal proc	essing	
Text books	1		I	
1. D. A, Patterson	and J.L Hennessy, "Computer Organization and Design	: Hardwa	are/ Soft	ware
Interface", 4th Ed	l., Elsevier, 2011.			

2. A. S Tannenbaum, "Structural Computer organization", 4th Ed., Prentice-Hall, 1999. **Reference Books**

 W. Wolf, "Modern VLSI Design: System on Silicon", 2nd Ed., Person Education,1998.
 Keshab Parhi, "VLSI Digital Signal Processing system design and implementations", Wiley1999.

M. TECH FIRST YEAR					
Cour	se Cod	e	AMTVL0213	LT P	Credit
Cour	·se Title))	Full Custom Design	300	03
Cour	·se Obje	ective			•
1	Student	ts will b	e familiar with the schematic fundamentals and layout	designs fl	ow.
2	Student	ts will c	ome to know about standard library cells as well as oth	er types o	f
	basic ce	<u>ells.</u>			
3	Student	ts will b	e able to design interconnect layout and know special e	electrical	
4	require	ments I	or 11.		
5	Student	ts will b	e able to learn various kind of CAD tools	lage luies	•
Pre-r	equisit	es•Bas	ics of VI SI		
	cquisit	C5 •Du5	Course Contents / Syllabus		
UNI	Г_I		INTRODUCTION		8 hours
Introd	uction: S	Schema	tic fundamentals Layout design Introduction to (CMOS V	USI manufacturing
proces	sses. Lav	vers and	l connectivity. Process design rules Significance of f	ull custor	n IC design, lavout
design	flows.				
UNI	Γ-II		SPECIALIZED BUILDING BLOCKS		8 hours
Advar	nced tech	niques	for specialized building blocks Standard cell libraries, I	Pad cells a	and Laser fuse cells,
Power	grid Clo	ock sign	als and Interconnect routing.		
UNIT-IIILAYOUT DESIGNS8 h		8 hours			
Interco	onnect la	yout de	esign, Special electrical requirements, Layout design te	chniques	to address electrical
charac	teristics.				
UNI	<u>[-IV</u>		LAYOUT CONSIDERATIONS		8 hours
Layou	t conside	erations	due to process constraints Large metal via implement	ntations, S	Step coverage rules,
	Special design rules, Laton-up and Guard rings, Constructing the pad ring, Minimizing Stress effects.		Stress effects.		
UNII-V LATOUI CAD TOOLS		als for layout Planning tools. Layout generation tools	Support to	o nours	
Cour		come.	After successful completion of this course students	will be al	ole to
Course Students will be able to					
CC		Design	layout with schematic.		
CC	D 2	Differentiate standard cells and other types of cells.			
CC	D 3	Do the electrical connections and interconnect layout designs.			
CC	D 4	Tackle with the minimization of stress effects.			
CC	CO 5 Demonstrate the layout tools, generation tools, etc.				
Text books					
1.Dan	Clein, C	MOS I	C Layout Concepts Methodologies and Tools, Newnes,	2000.	
2.Ray Alan Hastings, The Art of Analog Layout, 2nd Edition, Prentice Hall, 2006					
Reference Books					
1. CM	OS: Circ	uit Des	ign, Layout, and Simulation by R. Jacob Baker. 3rd Ed	ition.	

M. TECH FIRST YEAR			
Course Code	AMTVL0214	LT P	Credit
Course Title	MEMS Sensor Design	300	03
Course Object	ive:		
1	To provide the knowledge of MEMs fa	brication	
_	Technologies and Sensors/Transducers.		
2	To provide the knowledge about Mechanics of Beam	n and	
	Diaphragm Structures.		
3	To provide the knowledge about drag effect of a flui	d, Air	
	damping and its models.		
4	To provide the knowledge of Electrostatic Actuation	•	
5	To provide the basic knowledge of MEMS Structure	s and	
	Systems in RF applications.		
Pre-requisites:	Basics of sensors.		
	Course Contents / Syllabus		
UNIT-I	INTRODUCTION TO MEMS		8 hours
MEMS Fabrication	on Technologies, Materials and Substrates for M	EMS, Pro	cesses for
Micromachining,	Sensors/Transducers, Piezoresistive Effect, Piezoelec	tricity, Pie	zoresistive
Sensor.			
UNIT-II	MECHANICS OF BEAM AND DIAPH	HRAGM	8 hours
	STRUCTURES		
Stress and Strain,	Hooke's Law. Stress and Strain of Beam Structure	s: Stress,	Strain in a
Bent Beam, Bendi	ng Moment and the Moment of Inertia, Displacemen	t of Beam	Structures
Under Weight, Be	nding of Cantilever Beam Under Weight.		
UNIT-III	AIR DAMPING		8 hours
Drag Effect of a F	luid: Viscosity of a Fluid, Viscous Flow of a Fluid, I	Drag Force	Damping,
The Effects of A	ir Damping on Micro-Dynamics. Squeeze-film Air	Damping:	Reynolds'
Equations for Squ	eeze-film Air Damping, Damping of Perforated Thi	ck Plates.	Slide-film
Air Damping: Ba	sic Equations for Slide-film Air Damping, Couette-	flow Mod	el, Stokes-
flow Model.			
UNIT-IV	ELECTROSTATIC ACTUATION		8 hours
Electrostatic Force	es, Normal Force, Tangential Force, Fringe Effects,	Electrosta	tic Driving
of Mechanical Ac	tuators: Parallel-plate Actuator, Capacitive sensors.	Step and	Alternative
Voltage Driving: S	Step Voltage Driving, Negative Spring Effect and Vib	ration Free	luency.
UNIT-V	MEMS STRUCTURES AND SYSTEMS APPLICATIONS	IN RF	8 hours
Signal Integrity	in RF MEMS, Microelectromechanical Resor	nators: C	omb-Drive
Resonators, Beam Resonators, Coupled-Resonator Bandpass Filters, Film Bulk Acoustic			
Resonators, Micro	electromechanical Switches: Membrane Shunt Swite	ch, Cantile	ever Series
Switch.			
Course Outcon	ne: After successful completion of this course stud	lents will	be able to
CO 1	Identify MEMs fabrication Technologies.	_	

CO 2	Analyse Mechanics of Beam and Diaphragm Structures.		
CO 3	Explain drag effect of a fluid, Air damping and its models.		
CO 4 Design different Electrostatic Actuators.			
CO 5	Explain MEMS Structures and Systems in RF applications.		
Text books			
1. Minhang Bao, 'Analysis and Design Principles of MEMS Devices', First edition			
2005, Elsevier.			
2. Nadim Maluf, KirtWilliums, 'An Introduction to Microelectromechanical Systems			
Engineering',2nd ed., Artech House microelectromechanical library.			
Reference Boo	ks		
1. RS Muller, Howe, Senturia and Smith, "Micro-sensors", IEEE Press.			

M. TECH FIRST YEAR				
Course Code	rse Code AMTVL0215 LT P Credit			
Course Title	Nanoscale Devices: Modeling & Simulation	300	03	
Course Obje	ctive:			
1	To introduce novel MOSFET devices and understan	nd the		
	advantages of multi-gate devices			
2	To introduce the concepts of nanoscale MOS transister	or and		
	their performance characteristics			
3	To study the various Nano-scaled MOS transistor circuits	s		
4	To study radiation effects in SOI MOSFETs			
5	To study digital circuits and impact of device performance	nce on		
	digital circuits			
	Course Contents / Syllabus		0.1	
UNIT-I	MOSFET SCALING		8 hours	
MOSFET scaling, short channel effects - channel engineering - source/drain engineering - high k dielectric - copper interconnects - strain engineering, SOI MOSFET, multigate transistors – single gate – double gate – triple gate – surround gate, quantum effects – volume inversion – mobility – thresholdvoltage–intersub-bandscattering, multigatetechnology– mobility–gatestack.				
UNIT-II	MOS ELECTROSTATICS		8 hours	
MOS Electrost	atics – 1D – 2D MOS Electrostatics, MOSFET	Current	-Voltage	
Characteristics - CMOSTechnology - Ultimate limits, double gate MOS system - gate				
voltage effect - semiconductor thickness effect - asymmetry effect - oxide thickness effect -				
electron tunnel current – two dimensional confinements, scattering –mobility.				
	OH LOON NANOWIDE MOGEETS		101	
	SILICON NANOWIKE MOSFETS		10 hours	
Sincon nanowire MOSFETS – Evaluation of I-V characteristics – The I-V characteristics for non- degenerate carrier statistics – The I-V characteristics for degenerate carrier statistics – Carbon nanotube – Band structure of carbon nanotube – Band structure of graphene – Physical structure of nanotube – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube MOSFETs – Schottky barrier carbon nanotube FETs – Electronic conduction in molecules – General model for ballistic nano transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular transistors – Single electron charging – Single electron transistors				
UNIT-IV	RADIATION EFFECTS IN SOI MOSFETS		6 hours	
Radiation effects	s in SOI MOSFETs, total ionizing dose effects - single-g	gate SOI	– multi-	
gate devices, sing	gle event effect, scaling effects.			
UNIT-V	DIGITAL CIRCUITS		8 hours	
Digital circuits – impact of device performance on digital circuits – leakage performance trade off – multi VT devices and circuits – SRAM design, analogcircuit design – transconductance - intrinsic gain – flicker noise – self heating –band gap voltage reference – operational amplifier – comparator designs, mixed signal – successive approximation DAC, RF circuits.				

Course Outcome: After successful completion of this course students will be able to		
CO 1	Explain the MOS devices used below 10nm and beyond with	
	an eye on the future	
CO 2	Explain the physics behind the operation of multi-gate	
	systems.	
CO 3	To design circuits using nano-scaled MOS transistors with the	
	physical insight of their functional characteristics	
CO 4	Explain radiation effects in SOI MOSFETs	
	Evaluin and design disided singuity and inspect of device	
0.05	Explain and designaligital circuits and impact of device	
	performance on digital circuits	
Text books		
1. J P Colinge, "FINFETs and other multi-gate transistors", Springer - Series on		
integrated circuits and systems,2008		
2. Mark L	undstrom, Jing Guo, "Nanoscale Transistors: Device Physics,	
Modelingand Simulation", Springer,2006		
Reference bo	ooks	
1. M S Lur	ndstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University	
Press, C	ambridge UK. 2000	

M. TECH FIRST YEAR				
Course Code	AMTVL0216 LT P Credit			
Course Title	Physical Design & Automation	300	03	
Course Object	ive:			
1	Students will know how to place the blocks and how to pa	artition		
	the blocks while for designing the layout for IC.			
2	Students will be familiar to various kind of VLSI Automat	tion		
	Algorithms.			
3	Students will know the concepts of Physical Design Proce	ss		
4	such as Floor planning, Placement algorithms.			
4	Students will learn Global Routing and Detailed Routing			
5	algorithms.			
J Duo uo guigitogo				
Pre-requisites:	Basics of digital IC and data structures.			
	Course Contents / Syllabus			
UNIT-I	LOGIC SYNTHESIS & VERIFICATION		8 hours	
Logic Synthesis	& Verification: Introduction combinational logic synthes	sis, Bina	ry decision	
Diagram, Hardwa	re models for High- level synthesis.			
UNIT-II	NIT-II VLSI AUTOMATION ALGORITHMS			
VLSI Automation	n Algorithms: Partition: problem formulation, classifica	tion of	partitioning	
algorithms, Grou	p migration algorithms, simulated annealing & evolution	n other	partitioning	
algorithms.				
UNIT-III	PLACEMENT, FLOOR PLANNING & PIN ASSIGN		8 hours	
Placement, Floor	Planning & Pin assignment: problem-formulation, simulation	ion-based	d placement	
algorithms, other	· placement algorithms, constraint-based floor planning	ng, floo	or planning	
algorithms for mix	CLOPAL POLITING & DETAILED POLITING		0.1	
	GLOBAL ROUTING & DETAILED ROUTING		8 hours	
Global Routing: H	roblem formulation, classification of global routing algorithms	ithms, M	laze routing	
algorithm, line pro	be algorithm, Steiner Tree based algorithm, ILP based appi	oaches.		
Detailed Routing: problem formulation, classification of routing algorithms, single layer routing				
switchbox routing	algorithms	ing argo	intiniis, and	
INIT_V	OVER THE CELL ROUTING & VIA MINIMIZATIO)N	8 hours	
Over the Cell Ro	uting & via Minimization: two layers over the cell rou	iters con	o nours	
unconstrained via	minimization Compaction: problem formulation one-dime	insional a	compaction	
two dimension-ba	sed Compaction, hierarchical compaction.	noronar v	compaction,	
Course Outcor	ne • After successful completion of this course students	will he a	ble to	
	inc. Anter successful completion of this course students			
CO 1	Know how to place the blocks and how to partition the	blocks		
	while for designing the layout for IC.			
002	Explain VLSI Design Automation.			
CO 3	Explain the concepts of Physical Design Process such as	s Floor		
	planning, Placement and Routing.			

CO 4	AnalyzeGlobal Routing and Detailed Routing algorithms.
CO 5	Decompose large problem into pieces via minimization.
Text books	
1. Naveed S	Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer
Academic	Publisher, Second edition.
Reference Boo	ks
1. Christophi	Meinel&ThorstemTheobold, "Algorithm and Data Structures for VLSI
Design", k	KAP 2002.
2. Rolf Dreck	nsheler : "Evolutionary Algorithm for VLSI", second edition
3. Trimburge	r," Introduction to CAD for VLSI", Kluwer Academic publisher, 2002.

M. TECH FIRST YEAR				
Course Code	AMTVL0217	L	ΓР	Credit
Course Title	Embedded Microcontrollers	3	0 0	03
Course Objec	tive:	1		
1	To provide the Basic knowledge of interfa	icing	with	
	Embedded System.	U		
2	To analyse the process design of embedded system	stem.		
3	To realize the architecture of PIC 16F Microco	ontrol	ler	
	Series.			
4	To familiar with the fundamentals of ARM Pro	ocess	or	
	Cortex M3 & M4.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
5	To apply the knowledge of ARM Instruction	on Se	et for	
D	programming.			
Pre-requisites	: Digital System design, 8051 Microcontroller			
	Course Contents / Syllabus			
UNIT-I	TYPICAL EMBEDDED SYSTEMS			8 hours
Core of the emb	bedded system, General purpose and domain	spec	ific p	rocessor, ASICs,
PLDs, Commerc	ial off the shelf Components (COTS), Memo	ory: I	RAM,	ROM, Memory
according to the	type of interface, Memory Shadowing, Mem	ory s	election	on for embedded $(0, 1, 1, 1, 1)$
system, Sensors	and actuators, introduction to Communication	on Ir	iterfac	e (Onboard and
External).	EMDEDDED SYSTEMS DESIGN BDOCE	<u> </u>		0.1
	EMBEDDED SYSTEMS DESIGN PROCE	33	•	8 hours
Embedded system project development, Design issues and co-design issues in system				
development process, The Embedded Design Life Cycle, Selection Process, The Partitioning				
Decision (Hardware and Software partitioning), The Development and Debugging				
Software Technic	us Introduction to BDM ITAG and Nexus	Circ		nulator), Special
	PIC 16F MICROCONTROLLER SERIES			8 hours
UNIT-III Introduction to	PIC Microsoptrollar familias (8/16 and 22 h	(it) I	$\overline{\mathbf{D}}\mathbf{C}$ 1	6 nours
overview of	architecture and peripherals Pin diagra	m), r m q	ind i	Architecture of
PIC16E84/PIC16E84A Microcontroller Memory organization configuration memory				
addressing and special function registers parallel and serial ports timer and counters				
Special features of PIC16F84A (OSC Selection RESET - Power-on Reset (POR) Power-un				
Timer (PWRT).	Oscillator Start-up Timer (OST). Interrupts.	Wat	tchdog	Timer (WDT).
SLEEP, Code	Protection, ID Locations, In-Circuit Serial	Prog	gramn	ing, interrupts).
Architectural ove	rview of PIC 16F877/PIC 16F887A.			0, 1,
UNIT-IV	ARCHITECTURE OF ARM CORTEX M3	AN	D M4	8 hours
	PROCESSORS			
Introduction to (Cortex-M3 and Cortex-M4 processors (Proces	sor a	rchite	cture, Instruction
set, Block diagra	m, Memory system, Interrupt and exception su	pport).Prog	rammer's model,
Operation modes, Registers, Memory System, features, stack memory, memory				
requirements, endianness, bit band operations, access permissions and attributes, memory				
barriers, Low power design and teatures, low power application development, overview of				
exceptions and interrupts, exception types and interrupt management, vector table, exception				
sequence, use of	INVIC register, SCB register and other special	regi	sters 1	or exception and

interrupt control, configuration control and auxiliary control registers.		
UNIT-V	INSTRUCTION SETOF CORTEX M3 AND M4 8 hours	
	PROCESSORS	
Evolution of AR	M ISA, Comparison of the instruction set in ARM Cortex-M Processors,	
Unified Assembly Language, Addressing modes, Instruction set, Program flow control		
(branch, conditional branch, conditional execution, and function calls), Multiply accumulate		
(MAC) instruction	ons, Divide instructions, Memory barrier instructions, Exception-related	
instructions, Sleep mode-related instructions, Other functions, Introduction to Cortex-M4		
processor suppor	rt for Enhanced DSP instructions, Writing C and Assembly language	

Course Outcome: After successful completion of this course students will be able to

CO 1	Explain the Basic knowledge of interfacing with	
	Embedded System.	
CO 2	Analyse the process design of embedded system.	
CO 3	Realize the architecture of PIC 16F Microcontroller	
	Series.	
CO 4	Familiar with the fundamentals of ARM Processor	
	Cortex M3 & M4.	
CO 5	Apply the knowledge of ARM Instruction Set for	
	programming.	

Text books

programs.

- 1. Introduction to Embedded Systems, A Cyber physical approach, Edward A. Lee and Senjit A. Seshia.
- 2. Embedded Systems Design: An Introduction to Processes, Tools, and Techniques, by Arnold S. Berger, CMP Books.

- **1.** Designing Embedded Systems with PIC Microcontrollers: Principles and Applications, 2nd Edition, Tim Wilmshurst, Elsevier Publication.
 - 2. PIC Microcontroller and Embedded Systems Using Assembly and C for PIC 18 by Muhammad Ali Mazidi, Rolin D. McKinlay and Danny Causey, Pearson Publication.
 - **3.** The Definitive Guide to ARM Cortex M3 and Cortex-M4 Processors, Third Edition, Joseph Yiu, Elsevier Publication, 2015.
- 4. ARM Assembly Language Fundamentals and Techniques, William Hohl and Christopher Hinds, CRC Press, 2015.

M. TECH FIRST YEAR			
Course Code	AMTVL0218	L T P	Credit
Course Title	Real Time Operating System	300	03
Course Object	ive:		
1	To provide the concept of real time operating system.		
2	To analyse the task scheduling method & I/O system.		
3	To realize the firmware design process.		
4	To familiar with the different types of management sy	ystem	
	for RTOS.	, 	
5	To explain the concept of RTX.		
Pre-requisites:	Digital System design, Microcontroller.		
	Course Contents / Syllabus		
UNIT-I	OPEN SOURCE RTOS		8 hours
Basics of RTOS:	Real-time concepts, Hard Real time and Soft Rea	al-time, l	Differences
between General P	Purpose OS & RTOS, Basic architecture of an RTOS, S	Schedulin	g Systems,
Inter-process con	nmunication, Performance Matric in scheduling	models,	Interrupt
management in R	CTOS environment, Memory management, File systematics	tems, I/C) Systems,
Advantage and dis	sadvantage of RTOS. POSIX standards, RTOS Issues	s – Select	ting a Real
Time Operating Sy	stem, RTOS comparative study. Converting a normal	Linux ke	rnel to real
time kernel, Xenor	mai basics. Overview of Open source RTOS for Embe	edded sys	stems (Free
RTOS/ Chibios-R	Γ) and application development		
UNIT-II	Vx WORKS/ FREE RTOS		8 hours
VxWorks/ Free R7	OS Scheduling and Task Management – Real time sch	neduling,	Task
Creation, Intertask	Communication, Pipes, Semaphore, Message Queue, S	Signals, S	Sockets,
Interrupts. I/O Sys	tems - General Architecture, Device Driver Studies, D	river Mo	dule
explanation, Implementation of Device Driver for a peripheral.			
UNIT-III	EMBEDDED FIRMWARE DESIGN AND		10 hours
	DEVELOPMENT		
Embedded Firmwa	are Design Approaches, Super-loopbased approach, E	mbedded	Operating
System based appr	oach, Programming in Embedded C, Integrated develo	opment er	nvironment
(IDE), Overview of	f IDEs for Embedded System Development.		
UNIT-IV	EMBEDDED SYSTEM DESIGN WITH FREE R	ГOS	6 hours
Queue Manageme	ent, Characteristics of a Queue, Working with La	rge Data	, Interrupt
Management, Que	ues within an Interrupt Service Routine, Critical Section	ons and S	Suspending
the Scheduler, Resource Management, Memory Management.			
UNIT-V	RTX		8 hours
RTX structure, RT	X files, RTX task and time management, Simple Time	Manage	ment APIs,
Task Priority Sc	heme in RTX, Inter-Task Communication, Event,	Interru	ot, Mutex,
Semaphore, Mailboxes and Messages in RTX, RTX control functions, Architecture of			
CMSIS-RTOS.			
Course Outcome: After successful completion of this course students will be able to			
CO 1	Explain the concept of real time operating system.		

CO 2	Analyse the task scheduling method & I/O system.		
CO 3	Realize the firmware design process.		
CO 4	Familiar with the different types of management system for		
	RTOS.		
CO 5	Explain the concept of RTX.		
Text books			
1. Venkatesv	varanSreekrishnan,"Essential Linux Device Drivers", Ist Kin	dle edition,	
Prentice Hall, 2008			
2. Jonathan	W. Valvano, "Real-Time Operating Systems for ARM	Cortex-M	
Microcont	trollers" Jonathan Valvano; 4 edition		
Reference Boo	oks		
1. Jerry Coo	perstein, "Writing Linux Device Drivers: A Guide with Ex	kercises", J.	
Cooperste	in publishers ,2009		
2. Qing Li ai	2. Qing Li and Carolyn Yao,"Real Time Concepts for Embedded Systems" - Qing Li,		
Elsevier IS	SBN:1578201241 CMP Books © 2003	-	

- "Using the FreeRTOS Real Time Kernel" From Free RTOS.
 Sam Siewert, "Real-Time Embedded Systems And Components".

M. TECH FIRST YEAR			
Course Code	e AMTVL0219 LT P C		
Course Title	System On Chip (SOC) Design using ARM	300	03
Course Object	ive:		
1	Study the Architecture of Arm Cortex-M0 Processor.		
2	Describe the AMBA 3 AHB-Lite Bus Architectur	re,	
3	Learn the Programming of SoC Using C Language.		
4	Compare ARM Cortex-A9 Processor with other processor.		
5	Implement and compare an AXI UART and AXI- Stream Peripheral		
Pre-requisites:	1. Basics of HDL (Verilog /VHDL)	I	
-	2. Basics of Microcontroller Assembley language Prog	gramming	- ,
	Course Contents / Syllabus		
UNIT-I	INTRODUCTION TO SYSTEM-ON-CHIP	8	hours
- 100	DESIGN		
Differences among	g SoCs, CPUs and MCUs, Arm Cortex-M0 Processor A	Architect	are.
UNIT-II	PROGRAMMING AN SOC		8 hours
AMBA 3 AHB-I	Lite Bus Architecture, AHB VGA Peripheral, AHB	B UART	Peripheral,
Timer, GPIO and	d 7-Segment Peripherals, Interrupt Mechanisms, Pro	ogrammi	ng an SoC
Using C Language.			
UNIT-III	ARM CORTEX-A9 PROCESSOR		8 hours
Arm CMSIS and ARM Cortex-A9 I	Software Drivers, Arm Development Studio, ARMv7- Processor	-A/R ISA	Overview,
UNIT-IV	AMBA AXI4		8 hours
AMBA AXI4 B	us Architecture, Design and Implementation of an	AXI4-Li	te [™] GPIO
peripheral and a DDR Memory Controller			
UNIT-V	IMPLEMENTATION OF AN AXI UART AND AXI-STREAM		8 hours
Design and Impler	mentation of an AXI UART and AXI-Stream Periphera	al, AXI4-	Stream and
VGA Peripheral, I	HDMI Input Peripheral, System Debugging.		
Course Outcor	ne:After completion of this course students will be	able to	
CO 1	Explain Arm Cortex-M0 Processor Architecture.		
CO 2	RecognizeAMBA 3 AHB-Lite Bus Architectur VGA, GPIO and 7-Segment UART Peripheral.	re,	
CO 3	Program SoC Using C Language.		
CO 4	Explain ARM Cortex-A9 Processor.		
CO 5	Design and Implement an AXI UART and AXI- Stream Peripheral.		
Text books	· · · · · · · · · · · · · · · · · · ·	1	

- 1. ARM System-on-Chip Architecture by Steve B. Furber
- 2. ARM Assembly Language: Fundamentals and Techniques by William Hohl
- 3. The Definitive Guide to the ARM Cortex-M0 by Joseph Yiu

- 1. Computer System Design: System-On-Chip Michael J. Flynn and Wayne Luk, Wiely India.
- 2. Modern VLSI Design System on Chip Design Wayne Wolf, Prentice Hall,
- 3. Design of System on a Chip: Devices and Components, Ricardo Reis, Springer
- 4. System on Chip Verification Methodologies and Techniques: Prakash Rashinkar, Peter Paterson and Leena Singh L, Kluwer Academic Publishers

Link:	
Unit 1	https://www.youtube.com/watch?v=PRQXzjTrCJY
	https://www.youtube.com/watch?v=mNdevvirKsQ
Unit 2	https://www.youtube.com/watch?v=j2Nl4AXRs1Uhttps://www.youtube.com/watch?v=
	4VRtujwa_b8&list=PL90187D2B8F5AC28F&index=5
Unit 3	https://www.youtube.com/watch?v=4VRtujwa_b8
Unit 4	https://www.youtube.com/watch?v=mYP5SxDEjrM
	https://www.youtube.com/watch?v=QQY-h0HGHnI
	https://www.youtube.com/watch?v=tEvtb-
	mdJ4s&list=PL90187D2B8F5AC28F&index=16
Unit 5	https://www.youtube.com/watch?v=nbWWMPPC8aE
	https://www.youtube.com/watch?v=MANrmky5DfE